Relationships between Large-Scale Heat and Moisture Budgets and the Occurrence of Arctic Stratus Clouds

1985 ◽  
Vol 113 (9) ◽  
pp. 1441-1457 ◽  
Author(s):  
J. A. Curry ◽  
G. F. Herman
2013 ◽  
Vol 26 (21) ◽  
pp. 8378-8391 ◽  
Author(s):  
Yi Zhang ◽  
Rucong Yu ◽  
Jian Li ◽  
Weihua Yuan ◽  
Minghua Zhang

Abstract Given the large discrepancies that exist in climate models for shortwave cloud forcing over eastern China (EC), the dynamic (vertical motion and horizontal circulation) and thermodynamic (stability) relations of stratus clouds and the associated cloud radiative forcing in the cold season are examined. Unlike the stratus clouds over the southeastern Pacific Ocean (as a representative of marine boundary stratus), where thermodynamic forcing plays a primary role, the stratus clouds over EC are affected by both dynamic and thermodynamic factors. The Tibetan Plateau (TP)-forced low-level large-scale lifting and high stability over EC favor the accumulation of abundant saturated moist air, which contributes to the formation of stratus clouds. The TP slows down the westerly overflow through a frictional effect, resulting in midlevel divergence, and forces the low-level surrounding flows, resulting in convergence. Both midlevel divergence and low-level convergence sustain a rising motion and vertical water vapor transport over EC. The surface cold air is advected from the Siberian high by the surrounding northerly flow, causing low-level cooling. The cooling effect is enhanced by the blocking of the YunGui Plateau. The southwesterly wind carrying warm, moist air from the east Bay of Bengal is uplifted by the HengDuan Mountains via topographical forcing; the midtropospheric westerly flow further advects the warm air downstream of the TP, moistening and warming the middle troposphere on the lee side of the TP. The low-level cooling and midlevel warming together increase the stability. The favorable dynamic and thermodynamic large-scale environment allows for the formation of stratus clouds over EC during the cold season.


2020 ◽  
Author(s):  
Antti Ruuskanen ◽  
Sami Romakkaniemi ◽  
Harri Kokkola ◽  
Antti Arola ◽  
Santtu Mikkonen ◽  
...  

Abstract. Long term statistics of atmospheric aerosol and especially cloud scavenging were studied at the Puijo measurement station in Kuopio, Finland, during October 2010–November 2014. Aerosol size distributions, scattering coefficients at three different wavelengths (450 nm, 550 nm, and 700 nm), and absorption coefficient at wavelength 637 nm were measured with a special inlet system to sample interstitial and total aerosol in clouds. On average, accumulation mode particle concentration was found to be temperature dependent with lowest average concentrations of 200 cm−3 around 0 °C increasing to more than 800 cm−3 for temperatures higher than 20 °C. From the in-cloud measurements, both scattering and absorbing material scavenging efficiencies were observed to have slightly increasing temperature dependence. At 0 °C the efficiencies of scattering and absorbing matter were 0.85 and 0.55 with slopes of 0.005 °C−1 and 0.003 °C−1, respectively. Additionally, scavenging efficiencies were studied as a function of the diameter at which half of the particles are activated into cloud droplets. This analysis indicated that the is a higher fraction of absorbing material, typically black carbon, in smaller sizes so that at least 20–30 % of interstitial particles within clouds consist of absorbing material. In addition, the PM1-inlet revealed that approximately 20 % of absorbing material was observed to reside in particles with ambient diameter larger than ~ 1 µm at relative humidity below 90 %. Similarly, 40 % of scattering material was seen to be in particles larger than 1 µm. Altogether, this dataset provides information on size dependent aerosol composition that can be applied in evaluating how well large-scale aerosol models reproduce aerosol composition, especially with respect to scavenging in stratus clouds.


2021 ◽  
Author(s):  
Irina Gorodetskaya ◽  
Penny Rowe ◽  
Xun Zou ◽  
Anastasia Chyhareva ◽  
Svitlana Krakovska ◽  
...  

<p><span lang="en-US">Polar amplification has been pronounced in the Arctic with near-surface air temperatures increasing at more than twice the global warming rate d</span>uring the last several decades<span lang="en-US">. At the same time, over Antarctica temperature trends have exhibited a large regional variability. In particular, the </span>Antarctic Peninsula (AP) <span lang="en-US">stands out as having a </span>warming<span lang="en-US"> rate much higher than</span> the rest of the Antarctic ice sheet and other land areas in the Southern Hemisphere (SH)<span lang="en-US">.</span> <span lang="en-US">F</span>uture projections indicate that <span lang="en-US">warming and ice loss will intensify in both polar regions with important impacts</span> globally. In addition to the warming amplification, there has been also an enhancement of the polar water cycle with increase<span lang="en-US">s</span> <span lang="en-US">in </span>poleward moisture transport and precipitation in both polar regions. An important process linking warming and precipitation enhancement is a shift towards more frequent rainfall compared to snowfall<span lang="en-US">. F</span>uture projections show that the rain fraction will significantly increase in coastal Antarctica, especially in the AP. Atmospheric rivers (ARs), long corridors of intense moisture transport from subtropical and mid-latitude regions poleward, are known for <span lang="en-US">their </span>prominent role in <span lang="en-US">both </span>heat and moisture transport with impacts ranging from intense precipitation to temperature records and major melt events in Antarctica.<span lang="en-US"> Limited observations have hampered process understanding and correct representation of these extreme events in models.</span> <span lang="en-US">This presentation will give an overview of the </span>enhanced observations targeting ARs in the A<span lang="en-US">P</span> (<span lang="en-US">including </span>surface meteorology, radiosonde, cloud and precipitation remote sensing, <span lang="en-US">and </span>radiative fluxes) as part of the <span lang="en-US">Year of Polar Prediction (</span>YOPP<span lang="en-US">)</span>-SH international collaborative effort<span lang="en-US">. </span>In-depth analysis of transport of heat and moisture, <span lang="en-US">atmospheric vertical structure, </span>cloud properties<span lang="en-US"> and precipitation phase transition from snowfall to rainfall </span>during selected <span lang="en-US">AR </span>case<span lang="en-US">s</span> will be<span lang="en-US"> presented and compared with ERA5 reanalysis and high-resolution Polar-WRF model simulations</span>.<span lang="en-US"> We will highlight three different local regimes around the AP: large-scale precipitation over the Southern Ocean north of the AP, orographic enhancement of precipitation in the western AP and the role of foehn, cloud/precipitation clearing and temperature increase in the northeastern AP. </span></p>


1999 ◽  
Vol 56 (18) ◽  
pp. 3241-3261 ◽  
Author(s):  
Paul E. Ciesielski ◽  
Wayne H. Schubert ◽  
Richard H. Johnson

2014 ◽  
Vol 27 (8) ◽  
pp. 2971-2982 ◽  
Author(s):  
Matthew Rydzik ◽  
Ankur R. Desai

Abstract A relationship between midlatitude cyclone (MLC) tracks and snow-cover extent has been discussed in the literature over the last 50 years but not explicitly analyzed with high-resolution and long-term observations of both. Large-scale modeling studies have hinted that areas near the edge of the snow extent support enhanced baroclinicity because of differences in surface albedo and moisture fluxes. In this study, the relationship between snow-cover extent and midlatitude disturbance (MLD) trajectories is investigated across North America using objectively analyzed midlatitude disturbance trajectories and snow-cover extent from the North American Regional Reanalysis (NARR) for 1979–2010. MLDs include low-level mesoscale disturbances through midlatitude cyclones. A high-resolution MLD database is developed from sea level pressure minima that are tracked through subsequent 3-h time steps, and a simple algorithm is developed that identified the southern edge of the snow-cover extent. A robust enhanced frequency of MLDs in a region 50–350 km south of the snow-cover extent is found. The region of enhanced MLD frequency coincides with the region of maximum low-level baroclinicity. These observations support hypotheses of an internal feedback in which the snow-cover extent is leading the disturbance tracks through surface heat and moisture fluxes. Further, these results aid in the understanding of how midlatitude disturbance tracks may shift in a changing climate in response to snow-cover trends.


2016 ◽  
Vol 73 (4) ◽  
pp. 1789-1814 ◽  
Author(s):  
Seung-Bu Park ◽  
Pierre Gentine ◽  
Kai Schneider ◽  
Marie Farge

Abstract Coherent structures, such as updrafts, downdrafts/shells, and environmental subsidence in the boundary and cloud layers of shallow convection, are investigated using a new classification method. Using large-eddy simulation data, the new method first filters out background turbulence and small-scale gravity waves from the coherent part of the flow, composed of turbulent coherent structures and large-scale transporting gravity waves. Then the algorithm divides this coherent flow into “updrafts,” “downdrafts/shells,” “subsidence,” “ascendance,” and four other flow structures using an octant analysis. The novel method can systematically track structures from the cloud-free boundary layer to the cloud layer, thus allowing systematic analysis of the fate of updrafts and downdrafts. The frequency and contribution of the coherent structures to the vertical mass flux and transport of heat and moisture can then be investigated for the first time. Updrafts, subsidence, and downdrafts/subsiding shells—to a lesser extent—are shown to be the most frequent and dominant contributors to the vertical transport of heat and moisture in the boundary layer. Contrary to previous perspective, environmental subsidence transport is shown to be weak in the cloud layer. Instead, downdrafts/shells are the main downward transport contributors, especially in the trade inversion layer. The newly developed method in this study can be used to better evaluate the entrainment and detrainment of individual—or an ensemble of—coherent structures from the unsaturated boundary layer to the cloud layer.


Sign in / Sign up

Export Citation Format

Share Document